亚洲第五页-亚洲第成色999久久网站-亚洲第1页-亚洲大片在线观看-国产香蕉国产精品偷在线观看-国产香蕉成人综合精品视频

你的位置:首頁 > 電源管理 > 正文

如何消除步進電機的噪音和振動?

發布時間:2023-08-21 責任編輯:lina

【導讀】由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。


步進電機的噪音來自哪里?

由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。

步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。

步距角分辨率和細分

典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。

一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。


4-0.gif
Figure 1: Full-step operation

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 2: Half-step operation


低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 3: Pendulum behavior of the rotor leads to vibrations


在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。

電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 4: Reduction of motor vibrations when switching from full-step

to high microstep resolutions


斬波和PWM模式

噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。

傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is
not equal to target current


在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。

相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。

這一點在電機從靜止或低速到中速過程中非常重要。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 6: Zero-crossing plateau with classic of-time chopper modes


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 7: SpreadCycle hysteresis chopper with clean zero crossing


如何使步進電機實現完全的靜音?

盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。

T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。

TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。

圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode


StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。

這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。

除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 10: Zoomed-in PWM view of both motor phases and coil current
with voltage-controlled StealthChopTM  chopper mode


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 11: Zoomed-in PWM view of both motor phases and coil current
with current-controlled SpreadCycleTM  chopper mode


對步進電機來說改變了什么?

如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。

但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。

StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。

TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。

下載本文:如何消除步進電機的噪音和振動?


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

適用于高性能功率器件的 SiC 隔離解決方案

REASUNOS瑞森半導體碳化硅二極管在大功率電源上的應用

使用FPGA實現自適應全陣列局部調光解決方案

集成穩壓器消除了對分立元件的需求

180 W 功率因數校正電源


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

主站蜘蛛池模板: 激情内射亚洲一区二区三区爱妻 | 国产激情无码一区二区app | 激情av| 国产嫩草视频 | 亚洲少妇毛片 | 少妇一级片| yy6080私人伦理一级二级 | 91久久久久久久国产欧美日韩- | 久久欧美精品久久天美腿丝袜 | 91麻豆蜜桃一区二区三区 | 男女做爰猛烈叫床爽爽免费网站 | 高清不卡一区 | 日日碰狠狠躁久久躁9 | 国产一级片av大片 | 成人91免费版 | 风间由美在线观看 | 古装一级淫片a免费播放口 寡妇av | 日本大胆欧美人术艺术 | 九九99视频 | 国产精选在线观看 | 久久潮| 成人羞羞国产免费游戏 | 亚洲国产天堂久久综合 | 成人久久18免费网站图片 | 日韩久久国产 | 免费三级av | 99精品欧美一区二区三区视频 | 动漫羞羞| 欧美,日韩,国产在线 | ,国产精品国产三级国产 | 国产99在线| 国产二区自拍 | 精品视频一区二区三区在线观看 | 少妇乱淫 | 无码h黄动漫在线播放网站 国产精品高潮露脸在线观看 | 少妇与大狼拘作爱性a | 中文字幕精品一区二区2021年 | 精品人妻一区二区三区四区 | 91在线看| 国产成人精品一区二区色戒 | 亚洲一区二区三区自拍公司 | 天使萌一区二区三区免费观看 | 成年人免费大片 | 91看片国产 | 精品视频久久久久久 | 亚洲综合激情另类专区 | 越南处破女av免费 | 毛片的网站| www.成人免费视频 | 国产农村妇女高潮大叫 | 少妇激情一区二区三区视频 | 精品国产乱码久久久久久婷婷 | 日韩欧美视频免费观看 | 国产精品久久久久久久久久久久午 | 无码人妻aⅴ一区二区三区有奶水 | 韩国三级在线看 | 精品国产一区二区三区国产馆杂枝 | 女人高潮抽搐喷液30分钟视频 | 中文字幕亚洲国产 | 石原莉奈一区二区三区在线观看 | 日韩网站在线观看 | 免费的a级片 | 美女黄色在线观看 | 日本成人一级片 | 欧美精品99久久 | 精美欧美一区二区三区 | 亚洲欧美另类日本 | 成人精品鲁一区一区二区 | av大片在线无码免费 | 国产精品午夜无码体验区 | 黄色一级片在线看 | 99影视网| 在线看片人成视频免费无遮挡 | 久久精品精品 | av无码精品一区二区三区四区 | 天天躁日日躁狠狠躁性色av王爷 | 国产寡妇亲子伦一区二区 | 国产女人18毛片水真多1kt∧ | 成人福利免费视频 | 狠狠干在线观看 | 日韩在线一区二区三区影视 | 激情五月网站 | youjizzcom在线播放 | 少妇淫片aaaaa毛片叫床爽 | 狠狠人妻久久久久久综合 | 成人久久久久久久久久久 | 亚洲 欧美 国产 日韩 精品 | 国产三级香港三韩国三级 | 国产婷婷精品 | 国产精品视频在线观看 | 成人做爰高潮片免费视频九九九 | 欧美在线一二三区 | 亚洲热在线视频 | 8mav直接进入| 日韩一本之道一区中文字幕 | 能在线看的av | 性色av一区二区三区无码 | 樱桃成人精品视频在线播放 | 日韩黄网 | 亚洲精品国产精品国自产网站按摩 | 777精品| 免费人成在线观看网站品爱网 | 天天综合网7799精品视频 | 波多野结衣高清一区二区三区 | 久久99精品久久久久久水蜜桃 | 日韩在线不卡视频 | 亚洲区色| 日韩精品成人 | 午夜爽爽爽爽技女8888 | 在线成人一区 | 久久久久青草 | 丰满少妇弄高潮了www | 手机在线一区二区三区 | 欧美精品一区二区三区在线 | 无遮挡很爽很污很黄的网站 | 亚洲日本中文字幕乱码在线电影 | www.久久成人| 久久久久亚洲精品 | 欧美成人精品一区二区三区在线观看 | 人妻无码视频一区二区三区 | 国产免费一区二区三区在线能观看 | 尤物国产精品 | 国产精品成人国产乱 | 五月天激情国产综合婷婷婷 | 成人福利影院 | av视| 亚洲女同ⅹxx女同tv | 蜜桃精品视频在线观看 | 蜜乳av懂色av粉嫩av | 暖暖av在线 | 中国女人裸体乱淫 | 亚洲综合精品视频 | 日韩中文字幕在线观看视频 | 中文字幕一区二区三区乱码 | 成人欧美一区二区三区黑人麻豆 | 色人阁网站 | 人妻互换免费中文字幕 | 国产精品视频在线观看 | 欧美熟妇另类久久久久久多毛 | 奶涨边摸边做爰爽别停快点视频 | 国产成人精品免高潮在线观看 | 青柠影视在线观看免费高清中文 | 欧美成人一区二区三区片免费 | 欧美成人a | 九九九九精品视频在线观看 | 国产精品网站在线观看免费传媒 | 国产精品99久久久久久久女警 | 亚洲视频在线观看免费视频 | 色人阁在线视频 | 欧美激情综合色综合啪啪五月 | 亚洲成人高清 | 亚洲精选一区 | 欧美人与禽zozzo性之恋的特点 | 一级片毛片 | 色妞导航| 自拍超碰在线 | 色av性av丰满av国产 | 五月天丁香综合久久国产 | 精品在线免费视频 | 777米奇影视第四色 韩产日产国产欧产 | 在线观看国产福利 | 中文字幕日韩在线播放 | 欧美jizzhd精品欧美丰满 | 久久乐国产精品亚洲综合 | 久久久久亚洲精品无码网址 | 国产成人无码a区在线观看视频app | 搡老女人老妇女老熟妇 | 免费观看美女裸体网站 | 青娱乐国产视频 | 乱人伦人妻中文字幕不卡 | 亚洲精品白浆高清久久久久久 | 91久久久久久久久久久 | 成人黄色免费在线观看 | 无码熟妇人妻av在线电影 | 在线免费黄 | 欧美成人精品在线观看 | 天天综合网永久 | 不卡av一区| 国产精品永久久久久久久久久 | 91免费污视频 | 美女视频黄8视频大全 | 亚洲成av人片在线观看无 | 亚洲精品第二页 | 国产日韩欧美中文字幕 | 91精品国产高清91久久久久久 | 国产午夜精品久久久久久免费视 | 精品中文字幕一区二区 | 97在线公开视频 | 二级黄色毛片 | 一区二区在线免费 | а√天堂8资源中文在线 | 女人被狂躁c到高潮喷水电影 | 真人二十三式性视频(动) | 一区免费视频 | 一区二区三区视频在线 | 强睡邻居人妻中文字幕 | 成人羞羞国产免费图片 | 久久久日韩精品一区二区三区 | 欧美天堂色| 少妇啪啪姿势不断呻吟av | 成熟丰满熟妇高潮xxxxx | 久久二 | 免费视频www在线观看网站 | 国产欧美一区二区三区沐欲 | 亚洲精品一区久久久久久 | 九色porny丨精品自拍 | 国产毛片乡下农村妇女bd | 国产欧美精品一区二区三区 | 99国产精品99久久久久久娜娜 | 蜜桃免费在线视频 | 无码人妻丰满熟妇片毛片 | 又欲又肉又黄高h1v1 | 成 人影片 免费观看 | 成人性生交大片免费看r老牛网站 | 男女性动态激烈动全过程 | 婷婷久久亚洲 | 可以免费看的毛片 | 国产污视频在线观看 | 日日操夜夜骑 | 日女人免费视频 | 亚洲精品久久久一线二线三线 | 国偷自产一区二区三区在线观看 | 亚洲女人被黑人巨大进入 | 亚洲性生活大片 | 久久国产精彩视频 | av手机在线免费观看 | 日本精品婷婷久久爽一下 | 91久久精品一区 | 成人毛片在线观看 | 国产伦子伦视频在线观看 | 免费视频爱爱太爽了激情 | 中文字幕一区二区三区av | 熟女肥臀白浆大屁股一区二区 | 久久久久久久久久久久久女国产乱 | 五月激情丁香婷婷 | 欧美福利在线观看 | 午夜丰满少妇性开放视频 | 成人免费观看激情视频 | 脱岳裙子从后面挺进去在线观看 | 精品国产精品久久一区免费式 | 观看免费av| 亚洲一级黄色 | 亚洲看片lutube在线入口 | 无码国产69精品久久久久网站 | 在线观看www视频 | 国产精品成人一区二区 | 国产欧美日韩综合精品一区二区 | 中文免费在线观看 | 成 人色 网 站 欧美大片在线观看 | 久久国产精品偷任你爽任你 | 9.1在线观看免费 | 老熟妇乱子伦牲交视频 | 日本人xxxxxxxxx19 | 日本三级香港三级人妇99 | 香蕉视频在线免费看 | 无遮挡男女激烈动态图 | 日本欧美韩国国产精品 | 初尝情欲h名器av | 亚洲日本韩国在线 | 在线免费av观看 | 亚洲精品玖玖玖av在线看 | 欧美特级黄色大片 | 综合成人在线 | 欧美特级黄 | 国产精品久久久久久av | 少妇太紧太爽又黄又硬又爽视频 | 手机看片久久 | 国产精品一区亚洲二区日本三区 | 久久久久久久免费看 | 中文字幕亚洲激情 | 色综合色天天久久婷婷基地 | 免费视频色 | 亚洲人成网站18禁止 | 91精品婷婷国产综合久久蝌蚪 | 成人免费视频在线看 | 国产天堂av在线 | 日本在线免费 | 丁香社区五月天 | 综合在线一区 | 男女性高爱潮免费网站 | 五月激情婷婷综合 | 九草av| 综合色区亚洲熟妇另类 | 成人欧美一区二区三区 | 日韩在线专区 | 亚洲一区二区视频在线观看 | 中文字幕四区 | 国产高清在线观看视频 | 久久国产劲爆∧v内射-百度 | www国产精品内射熟女 | 国产精品vr专区 | 大陆国语对白国产av片 | 久久久久久欧美 | 国产偷窥盗摄一区二区 | 国产精品美女久久久久av超清 | 精品国产一区二区国模嫣然 | 三级视频网站 | 亚洲天码中字一区 | 天天拍天天操 | 欧美黑人疯狂性受xxxxx喷水 | 1515hh成人免费看 | 免费av小说 | 精品成在人线av无码免费看 | 盗摄中年夫妇啪啪免费观看 | 东南亚末成年videos | av高清| 久久中字 | 粉嫩久久99精品久久久久久夜 | 久久精品99久久久久久 | 在线免费观看日本视频 | 91精品久久久久久久久 | 久久久亚洲国产美女国产盗摄 | 色五月五月丁香亚洲综合网 | 久久精品国产一区二区三区 | 中文字幕在线不卡视频 | 亚洲日本免费 | 久久久精品人妻一区二区三区 | 国产精品天干天干 | 国产精品欧美激情在线播放 | 91爽爽| 日本在线视频一区二区 | 1000部精品久久久久久久久 | 国产网站91 | 亚洲熟妇av一区二区三区漫画 | 国产不卡视频 | 日本少妇毛茸茸 | 久久人网 | 免费观看成人 | 亚洲成人99 | 成人看片在线观看 | 特级毛片在线大全免费播放 | 成人www. | 国产98在线传媒麻豆有限公司 | 中文字幕在线观看亚洲日韩 | 中文字幕无线码免费人妻 | 一区二区在线免费观看视频 | 国产精品成人无码久久久 | 久久精品人人做人人综合试看 | 国产在热线精品av | 日韩av高清| 久久人人爽av亚洲精品天堂 | 原神污文全文肉高h | 爆乳女仆高潮在线观看 | 旅行的意义3在线观看韩国 绿帽av | 国产又粗又猛又爽视频 | 国产视频一区二区三区四区 | 青青草精品在线视频 | 亚洲偷怕 | 亚洲欧美一区二区在线观看 | 精品乱 | 在线免费av网 | 蜜桃av网 | 饥渴的少妇和男按摩师 | 亚洲熟女乱综合一区二区 | 日批视频在线免费看 | 国产98在线 | 欧美 | 在线天堂最新版资源 | 天堂免费av | a黄色一级片 | 91九色蝌蚪91por成人 | 谁有毛片网站 | 欧美性xxxxx极品少妇 | 国内精品久久久久影视老司机 | 中文在线а天堂中文在线新版 | 亚洲国产精品免费在线观看 | 九色在线| 亚洲国产精品无码一线岛国 | 欧美日韩午夜爽爽 | 久久精品毛片 | 日本黄色的视频 | 丰满少妇弄高潮了www | 少妇毛片一区二区三区免费视频 | 亚洲视频一区二区三区四区 | 中国一级黄色大片 | 亚洲欧美国产免费综合视频 | 亚洲的天堂av无码 | wwwxxxcom国产| 一级做a爰片久久毛片 | 国产农村妇女毛片精品久久 | 成人午夜高潮a∨猛片 | 成人在线免费播放视频 | 久久精品成人免费国产片桃视频 | 久久午夜夜伦鲁鲁片免费无码影视 | 青青草手机视频在线观看 | 99re在线播放 | 国产区免费 | 国产精品com | 婷婷深爱激情 | 爱爱视频免费看 | 91大尺度 | 欧美亚洲国产精品久久蜜芽直播 | 女同互添互慰av毛片观看 | 强开小嫩苞一区二区三区网站 | 在线观看高清av | 国产在线精品国自产拍影院同性 | 国产精品无码av天天爽播放器 | 婷婷综合视频 | 国产三级不卡 | 性――交――性――乱睡觉 | 亚洲成av人不卡无码影片 | 老子午夜精品无码 | 性一交一乱一区二区洋洋av | 27美女少妇洗澡偷拍 | 欧美夜夜夜 | 一级黄色a毛片 | 国产精品美女一区二区三区 | 亚洲色无码中文字幕 | 99久久影院| 国产在线拍揄自揄拍无码视频 | 成人性做爰aaa片免费看不忠 | 夜精品a片一区二区三区无码白浆 | 婷婷成人综合 | 天天操妹子 | 97伊人| 亚洲午夜精品久久久久久浪潮 | 99精品在线视频观看 | 日日碰狠狠躁久久躁96avv | 日本一区二区黄色 | 深夜福利小视频在线观看 | 手机成人在线视频 | 超碰狠狠操 | 超碰婷婷 | 国产亚洲欧美日韩亚洲中文色 | 视频一区国产 | 爱情岛aqdlt国产论坛 | 美女扒开屁股让男人桶 | sm免费人成虐网站 | 黄色理论视频 | 亚洲va中文字幕无码 | 男女激情视频免费观看刺激 | 日韩精品视频中文字幕 | 亚洲 欧美 综合 在线 精品 | 亚洲成av人乱码色午夜 | 一二三四日本中文在线 | 又黄又爽又色的视频 | 成人免费在线影院 | 欧美成人激情 | 人妻熟妇乱又伦精品视频 | 久久人人爽人人爽人人片av麻烦 | 丰满少妇高潮叫久久国产 | 免费网站在线高清观看 | 欧美aaaaa性bbbbb小妇 | 99这里有精品 | 超碰碰97 | 超污网站在线看 | 一级大片网站 | 婷婷九月丁香 | 国产乱码精品一区二三区蜜臂 | 久久www视频 | 天堂中文8资源在线8 | 男人的天堂在线 | 小毛片在线观看 | 成人一级生活片 | 伊人网址 | 天堂中文最新版在线官网在线 | 国产在线观看码高清视频 | 久久爱水蜜桃69 | 色婷婷五月综合亚洲小说 | 99视频偷窥在线精品国自产拍 | 国产欧美一区二区三区不卡视频 | 国产精品久久久久久亚瑟影院 | 日本免费www | 99久久久无码国产精品9 | 亚洲日韩色图 | 国产精品久久久久久久久免费软件 | 国产999在线 | 日本精品视频 | 艳妇臀荡乳欲伦交换日本 | zzijzzij亚洲日本成熟少妇 | 欧洲色av| 九九精品影院 | 天天躁夜夜躁天干天干2022 | 99re国产视频 | 日本在线视频二区 | 欧美色老头| 久久精品高清一区二区三区 | 欧美三级一级片 | 国产成人精品综合 | 国产一级淫片a免费播放 | 欧美成人免费观看视频 | 久久青青视频 | 内射老阿姨1区2区3区4区 | 天天色棕合合合合合合合 | 免费热情视频 | 91丨porny丨户外露出 | 呦系列视频一区二区三区 | 国产精品对白刺激在线观看 | 久草三级| 一级黄色毛片播放 | 91精品国产中文字幕 | 又大又粗欧美黑人aaaaa片 | 中文字幕av在线一二三区 | 国产精品久久久久久人妻精品 | 最新中文无码字字幕在线 | 手机在线看片福利 | 性国产三级在线观看 | 亚洲国产精品麻豆 | 国产精品久久久一区二区三区 | 又黄又爽又色成人免费视频体验区 | 内射囯产旡码丰满少妇 | 久久久久无码精品亚洲日韩 | 韩国精品一区二区三区 | 国产精品区一区二区三 | 国产91区 | 国产又黄又爽刺激的视频 | 直接在线观看的三级网址 | 国产二区三区 | 久草福利资源站 | 欧美精品播放 | 国产99久60在线视频 | 传媒 | 97精品一区二区视频在线观看 | 亚洲色图偷拍视频 | 肥老熟妇伦子伦456视频 | 久久草草精品入口av | 日韩性网站 | 九九热这里只有精品6 | 在线人成| 欧美少妇18p | 精品综合久久久久久98 | 国产色网 | 五月天激情视频 | 亚洲国产精品久久久久婷蜜芽 | 天天操天天弄 | 日韩aⅴ片| 国产色视频在线观看免费 | 激情91视频| 亚洲女人av久久天堂 | 北条麻妃99精品久久朝桐光 | 国产精品一品二区三区四区18 | 中文字幕第一页在线视频 | 9.1成人看片免费版 9191国产精品 | 大陆性猛交xxxx乱大交 | 日本69精品久久久久999小说 | 国产在线视频一区二区 | 人妻少妇av无码一区二区 | 国产精成人 | 亚洲自拍一区在线 | 国模无码一区二区三区 | 久久男人 | 伊人导航 | 亚洲成在人线在线播放 | 久久久不卡国产精品一区二区 | 日本在线免费观看 | 中国免费黄色片 | 男女猛烈激情xx00免费视频 | 亚洲精品国产精 | 国产精品亚洲综合一区在线观看 | av免费视屏 | 国产日韩精品一区二区 | 三上悠亚精品一区二区 | 文中字幕一区二区三区视频播放 | 精品视频免费播放 | 国产在线2 | 日本一卡2卡三卡4卡免费网站 | 中文字幕无码不卡在线 | 日本在线观看免费 | xxxxwww69| 日本边添边摸边做边爱的网站 | 艳妇臀荡乳欲伦交换在线看 | 日本丰满白嫩大屁股ass | 亚洲色图19p | 日本jizzjizz | 天堂av免费看 | 国产免费一区二区三区免费视频 | 日本女人hd | 亚洲自偷自偷偷色无码中文 | 成人在线免费 | 国产精品视频全国免费观看 | 日本无遮挡吸乳呻吟免费视频网站 | 大地资源在线观看官网第三页 | 99精品视频播放 | 日本黄色三级网站 | 午夜精品一区二区三区免费视频 | 人妻少妇被粗大爽9797pw | 亚洲一区二区三区高清av | 久久精品成人一区二区三区 | www.黄色网| 国产成人精品一区二区三区免费 | 国产午夜精品一区二区 | 海角国产乱辈乱精品视频 | 黑人狂躁日本妞一区二区三区 | 天使萌一区二区三区免费观看 | 午夜秋霞影院 | 欧美一级不卡 | 狠狠摸狠狠澡 | 日韩亚洲视频在线观看 | 国产成人av影院 | 99热精品在线 | 91原创视频在线观看 | 亚洲免费天堂 | 久久精品亚洲中文字幕无码网站 | 国产精品二区一区二区aⅴ污介绍 | 极品人妻少妇一区二区三区 | 一本久久精品一区二区 | 亚洲成人综合视频 | 一本大道色婷婷在线 | 日本黄色片 | 国精品无码人妻一区二区三区 | 777欧美 | 中文字幕日本六区小电影 | 97超碰人人爱 | 中国妞xxxhd露脸偷拍视频 | 999精品视频 | 欧美日韩精品在线观看视频 | 99爱在线精品免费观看 | 九七伦理97伦理手机 | 热99精品视频| 国产精品久久久久久免费免熟 | 九九精品在线视频 | 免费的av网址 | 国产欧美一区二区三区国产幕精品 | 日本55丰满熟妇厨房伦 | 少妇av一区 | 一个人看的www视频在线播放 | 亚洲午夜精品在线观看 |