亚洲第五页-亚洲第成色999久久网站-亚洲第1页-亚洲大片在线观看-国产香蕉国产精品偷在线观看-国产香蕉成人综合精品视频

你的位置:首頁 > 光電顯示 > 正文

在PCR熱循環(huán)時為何選用薄膜熱電?

發(fā)布時間:2012-12-04 責(zé)任編輯:abbywang

【導(dǎo)讀】薄膜熱電的冷卻器中有幾個關(guān)鍵優(yōu)點,特別適合用于PCR。這些優(yōu)勢包括:較小的尺寸和厚度相同的熱量抽水能力;更快速的熱響應(yīng)(最高10X更大);先進的集成能力。同時小尺寸,能夠使集成到系統(tǒng)的影響最小。


Background

Polymerase chain reaction (PCR) is a scientific technique that amplifies a single or a few copies of a specific piece of DNA by several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. Developed in 1983, PCR has rapidly become one of the most widely used techniques in molecular biology and for good reason: it is a rapid, inexpensive and simple means of producing relatively large quantities of whole or fractional DNA strands copied from minute quantities of source DNA material even when the source DNA is of relatively poor quality. Applications for PCR include DNA cloning for sequencing, DNA-based phylogeny, or functional analysis of genes; the diagnosis of hereditary diseases; the identification of genetic fingerprints (used in forensic sciences and paternity testing); and the detection and diagnosis of infectious diseases.
Use of Thin-Film Thermoelectrics in PCR Thermal Cycling
Figure 1: Use of Thin-Film Thermoelectrics in PCR Thermal Cycling
 
The broad life science division has witnessed rapid growth and technological improvements varying from sector to sector for the past three to five years. Even during the recent recession years, the PCR industry has experienced an accelerating growth rate confirming the positive growth prospects. Molecular diagnostics and the Human Genome Project (HGP) are two of the main drivers contributing to the growth of gene amplification technology.  It covers all segments such as drug discovery, DNA amplification, forensic identification, gene therapy and diagnosis. Newly developed PCR instruments for detecting life threatening diseases also signal positive growth.
During DNA replication
Figure 2: During DNA replication, each strand of the original molecule acts as a template for the synthesis of a new, complementary DNA strand.

[page]
Market Drivers

Smaller, faster, cheaper is the rallying cry for virtually every successful product on the market, and the PCR market is no exception. It is clear that the PCR market has and will continue to have significant near or above double-digit growth year after year.  One of the significant trends in the PCR market today is a movement towards smaller, individually addressable wells (containing the DNA).  Historically, systems were comprised of large 96-well thermal cyclers for large industry applications. 

Companies are now developing applications that require individually addressable wells, where only a few samples are tested at a time. An additional requirement would be that each well be individually programmable. The requirement to have individually addressable wells enables different reagents to be simultaneously applied to identical DNA samples with different outcomes intended.

Another rapidly developing market is food safety and security.  According to a recently published report by Strategic Consulting Inc. (SCI), the market for microbiological testing in the food sector has been growing at nearly 9% every year since 1998. The food sector now accounts for nearly half of the total industrial microbiology market. The SCI report estimates that by 2013, the number of tests carried out worldwide will be nearly 970 million, up from 740 million in 2008. The drivers for this growth are identified as an overall increase in food production, food safety concerns, demands from retailers and an increase in regulatory requirements.

Thermal Cycling and the PCR Process

The PCR process is very versatile. Many types of samples can be analyzed for nucleic acids. Most PCR uses DNA as a target, rather than RNA, because of the stability of the DNA molecule and the ease with which DNA can be isolated. By following a few basic rules, problems can be avoided in the preparation of DNA for the PCR. The essential criteria for any DNA sample is that it contains at least one intact DNA strand encompassing the region to be amplified, and that any impurities are sufficiently diluted so as not to inhibit the polymerization step of the PCR reaction.

PCR requires thermal cycling, i.e., alternately heating and cooling the DNA sample in a defined series of temperature steps. These thermal cycling steps are necessary first to physically separate the two strands in a DNA double helix at a high temperature in a process called DNA melting. At a lower temperature, each strand is then used as the template in DNA synthesis by the DNA polymerase to selectively amplify the target DNA. As the PCR process progresses, the DNA generated is used as a template for replication, setting in motion a chain reaction in which the DNA template is exponentially amplified. Table 1 describes the thermal cycling steps, temperatures, and hold times required in a typical PCR process. The selectivity of PCR results from the use of primers that are complementary to the DNA region targeted for amplification under specific thermal cycling conditions.

A thermal cycler is an automated instrument specifically designed to generate the requisite thermal cycles for PCR. A typical device consists of a metal block with holes where plastic vials holding the PCR reaction mixtures are inserted. The instrument has an integrated heating/cooling unit that is used to systematically raise and lower the temperature of the block.  Thermoelectric coolers (TEC) are used for a large number of these systems.
Table 1: Typical thermal cycling steps used in the PCR Process
Typical thermal cycling steps used in the PCR Process
 
[page]
How Thermoelectric Coolers Function

Thermoelectric cooling makes use of the Peltier effect to create a heat flux between the junctions of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state heat pump that transfers heat from one side of the device to the other side against a temperature gradient (from cold to hot). To do this, electrical energy is required.  The electrical energy used for the pumping is converted into additional heat that must be removed from the system (much like the heat from a home air-conditioner unit).  A device that operates in this manner may also be called a Peltier device, Peltier diode, Peltier heat pump, solid state refrigerator, or thermoelectric cooler.
The cooling curve of a thermoelectric cooler at three different heat loads
Figure 3: The cooling curve of a thermoelectric cooler at three different heat loads (10%, 30% and 50% of the Qmax or maximum allowable heat load. TEC 

The most basic representation of a thermoelectric cooling device is a cooling curve (Figure 3). The cooling curve represents the ΔT (or temperature difference between the cold and hot sides of the TEC) as a function of the input electrical current to the TEC. There is a different curve for each unique amount of heat being pumped. Figure 2 shows three different examples.  As the heat pumped (Q) increases, the amount the TEC can cool is reduced.  For all cases, the maximum drive current for the module, Imax, provides the most cooling achievable from that TEC under the given load conditions.

Thin-film thermoelectric coolers (eTECs) operate in the same manner as conventional ones but offer several key advantages that are particularly well suited for PCR.  These advantages are:

Smaller footprint and thickness for the same heat pumping capacity (Fig. 4).
More rapid thermal response (up to 10X greater)
Advanced integration capability.  The small size enables integration into systems with minimal impact.

Size comparison of a 4 W Nextreme eTEC to a conventional
Figure 4: Size comparison of a 4 W Nextreme eTEC to a conventional TEC with the same heat pumping capacity.

[page]
Thermoelectrics for the PCR Process

The market for PCR is changing.  New applications pushing for portability and reduced analysis time offer the promise of large new markets.  In order to meet these requirements, systems having smaller lighter quicker TECs are required. Due to their low mass, thin-film thermoelectric devices are particularly well suited for producing rapid temperature changes while also achieving a uniform temperature distribution throughout the block, or enabling different temperatures in different parts of the block. This is particularly useful when testing suitable annealing temperatures for primers, which are required for initiation of the DNA replication sequence.

Thermal cyclers with thin-film technology inside can offer significantly shorter throughput times for DNA amplification. Precision temperature control takes the guesswork out of the traditional "trial and error" methods used in DNA amplification and reduces the need to run multiple trials to get the desired results. Thin-film technology can enable a new generation of thermal cyclers for equipment manufacturers that lower barrier-to-entry and increase opportunities for differentiation.

In 2008, Nextreme successfully demonstrated short cycle time temperature control for PCR using two eTEC thermoelectric modules that behave as microscopic Peltier heat pumps. Figure 4 shows example thermal profiles of the fluid in the well (“Water”) and the temperature of the sample holder (“Cu Cup”) that indicates how the TEC overdrives temperature to produce the desired thermal profile in the sample. 

Transient temperature measurement using thin-films in PCR thermal cycling
Figure 5: Transient temperature measurement using thin-films in PCR thermal cycling
 
As discussed above, each PCR step occurs at a different temperature, thus precision control is one the key features of a thermal cycler.

Implementation of eTECs in PCR amplification provides the following advantages: 

Shorter throughput times for DNA amplification
Fast temperature transition (10ºC per second)
Small mass of thermal cycler
Higher density of wells per machine
Physical size of conventional TEC prevents this versus the micro-size of eTECs
Precise temperature control
Ultra-fast response time
Uniquely high power pumping capability

[page]
Thin-Film Thermoelectrics Integration (Faster Cycles, Higher Throughput)

Thermal cycle times in PCR thermal cyclers are determined both by the dwell times during the denaturation, annealing, and extension phases and the thermal transition time between these phases. Thermal cycle time is minimized and throughput maximized by minimizing the transition time between the phases. Conventional PCR systems use large individual sample volumes (e.g.; 100 µL) and temperature transitions at 1 - 5 °C/s. However, while most PCR protocols are performed at the 25 µL to 50 µL scale, sample volume as low as 5 µL have also been shown to be successful.
Typical structure of a PCR thermal cycler using thin-film thermoelectric devices
Figure 6: Typical structure of a PCR thermal cycler using thin-film thermoelectric devices. 

A typical PCR thermal cycler using thin-film thermoelectric devices is shown in Figure 5. The thermal subsystem consists of a sample cartridge holder, support platform, thin-film thermoelectric module with integrated heat spreader interface, and heat sink (shown with fan). This subsystem is designed to provide rapid thermal cycling for single well or lab-on-chip designs. In conventional PCR systems intended for laboratory usage, multiple samples (e.g., 96 or more) are cycled simultaneously using a single large heat spreader and bulk thermoelectric device. Current market shifts towards doctor''''''''''''''''''''''''''''''''s office or patient side usage systems that handle 1 - 4 samples at a time are leading to a need for smaller and more rapid thermal cyclers.

The temperature transition rates (?C/s) between phases can be increased by the following:

minimizing the thermal capacity of the load (all components that must be heated and cooled)
minimizing the volume of the sample
minimizing the thermal resistance (conversely increase of thermal conductance) of the heat transfer structure on the sample side of the thermoelectric module.
optimizing the sample geometry to maximize the area for heat transfer into the sample cartridge and sample and to minimize the heat transmission distance in the sample. This can be achieved by integrating the sample side heat spreader into the thermoelectric module itself and matching its area with that of the sample area of the cartridge.

The high heat pumping capacity per unit area (typically measured in watts/cm2) of the thin-film modules, along with their inherent rapid response, enables extremely rapid temperature transitions in the sample. For optimized designs, temperature transition rates in the range of 20°C/s to 30°C/s are feasible for currently used sample volumes. For smaller sample volumes, even faster temperature transitions rates are possible.

A thermal cycler for a 50 µL sample volume was designed using a standard heat sink and fan with the sample chamber diameter of 16 mm and height of 0.25 mm. Typically used materials were assumed for the sample cartridge and film seal for the cycler shown in Figure 5. The thin-film thermoelectric module was optimized for the selected heat sink to minimize the thermal transition times.  The modeled thermal response of the system achieves the 70°C to 95°C transition in the sample in 1 second and 95°C to 50°C transition in 2 seconds. The simulated temperatures of the sample (red line), sample side spreader (blue line), and heat sink (green line), are shown in Figure 6.
Simulated thermal cycle using thin-film thermoelectric modules
Figure 7: Simulated thermal cycle using thin-film thermoelectric modules with a 50 µL sample volume and thermal cycler shown in Figure 6. The plot shows the sample temperature in red, the integrated sample side spreader temperature in blue, and the heat sink temperature in green

[page]
Electrical Considerations

The thin-film thermoelectric assembly as referenced in the PCR application above contains four eTEC HV56 modules connected electrically in series. The optimal drive current for these modules in a PCR application is likely to be in the -0.9A to 0.6A range. The range is achieved by applying negative (-) voltage to the assembly, which puts the eTEC into heating mode to achieve the 95C rise temperature, and then switching the polarity to put the eTEC into cooling mode to drive the device to the desired hold temperature. 

Several off-the-shelf thermoelectric cooler controllers or temperature controllers are available to drive and control Nextreme eTEC modules. These controllers use current sensing to control the eTEC current. The devices rely on an external NTC thermistor to sense the load temperature and provide a control loop to adjust the eTEC current and maintain a desired load temperature.

Nextreme''''''''''''''''''''''''''''''''s eTEC module assemblies can easily be connected electrically in series or parallel configurations to match system voltages and drive current requirements.

Reliability of Thin-Film Thermoelectric Technology in PCR Thermal Cycling

Nextreme has conducted rigorous reliability tests on the HV-family of thermoelectric modules.  The devices have surpassed baseline test in mechanical shock, thermal storage and power cycling.  In all cases, the results strongly indicate HV modules are reliable in use in PCR thermal cycling applications.

Non-Powered Environmental Stress

High-temperature storage provides a good indicator of long-term reliability, particularly as it relates to diffusion-based failure modes and interface stability.  The requirements for this test were 85?C for 2000 hours.  To further stress the module and accelerate temperature dependent failure mechanisms, Nextreme subjects thermoelectric modules to temperatures well above maximum operating conditions (typically 150?C).  Figure 7 shows the results of 150?C storage with read-points on the AC resistance at 254, 432, 1190, 1526 and 2534 hours.  The AC resistance varied less than 1% from the starting resistance in all cases.  This indicates there are no temperature driven changes in the thermoelectric material, contacts or interconnects under these conditions and the modules are stable.

Percent change in AC resistance of the HV14 modules
Figure 8:  Percent change in AC resistance of the HV14 modules taken at different times (hours) up to 2534 hours.  Less the 1% change in ACR was observed.
[page]
Powered Environmental Stress

Power cycling provides one of the most useful thermoelectric reliability tests as it simulates extreme usage by inducing large current pulses that simultaneously induce large thermal gradients in the device. These gradients produce expansion and contraction of the module that can lead to fatigue failures.  Conducting power cycling at elevated temperatures can also induce diffusion-based failures.  Figure 8 shows power cycling data of three HV14 modules at 90% of Imax for 100,000 cycles.  In this test, the cycle period was 5 seconds on and 5 seconds off.  This rapid cycling is enabled by the fast response time of the thin-film module and enables more rapid accumulation of data.  It also results in a rapid change in the internal stress of the devices that contributes to accelerated aging and fatigue. The ?T of the module was monitored throughout the testing and exhibited less than a 4% change over the entire 100,000 cycle test. 

Change in module
Figure 9:  Change in module .T over 100,000 cycles at 90% of Imax.
 
Summary

Rapid thermal cycling time is becoming increasingly important as PCR becomes more widely used in point-of-service applications.  The use of Nextreme’s thin-film thermoelectric eTECs provides two key attributes that enable this quickly emerging market, namely higher thermal response time and smaller size.   Nextreme has modeled and designed a thermal cycler capable of 1-2 second transition times for 50 ?l sample sizes that dramatically improves on the existing conventional Peltier solutions.  Further optimization is possible when considering the details of the end application including sample size, sample holder configuration, system size and cost. 

 

 

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

主站蜘蛛池模板: 精品国产一区二区三区久久狼 | 午夜免费男女aaaa片 | 亚洲品牌自拍一品区9 | 久久久www免费人成黑人精品 | 麻豆国产人妻欲求不满谁演的 | 99久久国产综合精品麻豆 | 波多野结衣大战黑人8k经典 | 欧美日韩免费看 | 日韩中文三级 | 久久久久久蜜桃一区二区 | 亚洲精品天堂成人片av在线播放 | 久久久久久久久久久久久久久久久 | 一区视频在线 | 中文字幕理伦片免费看 | 国产又粗又猛又黄又爽无遮挡 | 96日本xxxxxⅹxxx70 | 久草综合在线 | 成人影视免费观看 | 天天躁天天狠天天透 | 寂寞少妇让水电工爽了一小说 | 亚洲天堂av网站 | www91香蕉| 成码无人av片在线观看网站 | 欧美67194| 国产经典一区二区三区 | 熟睡人妻被讨厌的公侵犯 | 日本精品视频免费 | 精品熟女少妇av免费久久 | 久久国产精品免费一区 | 麻豆做爰免费观看 | 在线免费观看a视频 | 成年人免费网站在线观看 | 床戏做爰无遮挡摸亲胸小说 | 日韩卡一卡二 | 狠狠色成色综合网 | 激情啪啪网站 | 色婷婷视频在线观看 | 成人无码精品一区二区三区 | 成人乱码一区二区三区av66 | 国产精品久久久久久久毛片明星 | 日韩在线视频网 | 国产三级短视频 | 国产伦孑沙发午休精品 | 免费成人视屏 | 91九色中文 | 久久99精品久久久久久久清纯 | 亚洲综合区 | 久久精品日日躁夜夜躁 | 欧美黄网址 | 96国产精品久久久久aⅴ四区 | 亚洲国产av高清无码 | 午夜精品极品粉嫩国产尤物 | 水蜜桃av无码| 乌克兰性生交视频 | www欧美亚洲 | 日韩中文字幕在线免费观看 | 午夜美女在线 | 少妇裸体淫交免费看片 | 亚洲大尺度在线观看 | 叶玉卿三级露全乳视频 | 一本一道久久 | 欧美 丝袜 自拍 制服 另类 | 国产交换配乱淫视频a | 精品国产一区二区三区四区四 | 国产精品久久久久久吹潮 | 日韩精品免费一区二区夜夜嗨 | 精品久久久久久无码中文字幕 | 色干综合| 无码人妻丰满熟妇片毛片 | 两口子真实刺激高潮视频 | 精品伊人| 国产成年人 | 青青草视频在线看 | 国内av自拍| 亚洲精品久久久久久中文传媒 | 国产91色在线亚洲 | 亚洲爆乳无码专区www | 黄色一级视频免费看 | 好吊妞视频988gao免费 | 一本一道av | 亚洲最大成人av | 国产精品无码无卡无需播放器 | 淫综合网 | 亚洲综合色自拍一区 | 久久九九兔免费精品6 | 国产馆av | 波多野结衣精品在线 | 天干天干天啪啪夜爽爽av小说 | 久久男人av久久久久久男 | 久久成人在线 | 麻豆入口 | 日韩手机看片 | 肉体粗喘娇吟国产91 | 大学生xvideoscom | 国产最猛性xxxx | tube中国91xxxxx国产 | 香蕉久久久 | 麻豆md0077饥渴少妇 | 亚洲国产精品毛片av不卡在线 | 激情内射亚洲一区二区三区 | 亚洲一区二区美女 | 真人二十三式性视频(动) | 免费黄色小说视频 | 国产精品久久高潮呻吟粉嫩av | 超高清日韩aⅴ大片美女图片 | 粗大的内捧猛烈进出小视频 | 亚洲午夜不卡 | 嫩草国产福利视频一区二区 | 久久久www.| 91精品一区二区 | 泰剧19禁啪啪无遮挡 | 色欲精品国产一区二区三区av | 黄色一级片在线看 | 免费无码又爽又刺激软件下载直播 | 日韩在线视频观看 | 无码一区二区三区在线观看 | 国产浮力第一页 | 精品一卡二卡 | 色视频观看 | 国产人妖乱国产精品人妖 | 免费看黄色aaaaaa 片 | 亚洲欧美日韩国产精品一区二区 | 国产精品99精品无码视亚 | 国产精品十八禁在线观看 | 精品一区二区三区在线成人 | 51国偷自产一区二区三区 | 久久久精品欧美一区二区 | 亚洲第一网站男人都懂 | 久久h| 日本老少交 | 又粗又长又大又爽又黄少妇毛片 | 国产午夜禁区精品视频 | 精品国产三级在线观看 | 俄罗斯15一18性视频 | 亚洲精品国 | 欧美黄网在线观看 | 一级又爽又黄的免费毛片视频 | 免费无码又爽又高潮视频 | 91精品国产综合久久久久 | 四虎影视8848hh | 亚洲国产精品久久人人爱 | 精品视频一区二区三区四区五区 | 强奷乱码中文字幕熟女一 | 国产另类精品 | 国产精品人人妻人人爽人人牛 | 国产成人片无码视频在线观看 | 51av在线| 亚洲一区二三区 | 97夜夜澡人人爽人人喊91洗澡 | 波多野结衣 久久 | 网站黄在线| 欧美性tv| 18视频在线观看男男 | 九色91蝌蚪 | 婷婷伊人五月色噜噜精品一区 | 国产自在线 | 欧美乱大交xxxxx春色视频 | 加勒比综合在线888 夹得我好紧好爽日出了水视频 | 亚洲中文字幕无码中文字 | 特级西西人体444www高清大胆 | 黄色aaa视频 | 欧美精品国产一区 | 伊人春色av | 少妇被粗大的猛进出69影院 | av不卡免费看| 亚洲免费综合色在线视频 | 精品成人佐山爱一区二区 | 私人av| 男人的天堂视频网站 | 不卡的日韩av | 99热这里只有精品3 99热这里只有精品4 | 大伊香蕉在线精品视频75 | 亚洲欧美中文日韩在线v日本 | 亚洲精品久久久中文字幕 | 日本xxxx丰满人妖学校 | 亚洲综合激情五月丁香六月 | 毛片网站有哪些 | 中文成人无字幕乱码精品区 | 精品视频一区二区在线 | 久久国内 | 日韩视频在线观看一区二区三区 | 久久国产v综合v亚洲欧美蜜臀 | 亚洲超碰在线观看 | 狠狠躁天天躁夜夜添人人 | 动漫3d精品一区二区三区乱码 | 国产欧美一区二区三区在线看 | 91精品在线视频观看 | 免费a级毛片 | 天堂俺去俺来也www久久婷婷 | 日韩成av人片在线观看 | 日韩欧美亚 | 激性欧美激情在线 | 欧美操日韩 | 中文字幕毛片 | zzzwww在线看片免费 | 99视频在线精品免费观看2 | 国产精品成人亚洲一区二区 | 华人av在线| 久久久久久久久久久久久久久久久 | 免费av在线播放 | 福利视频在线播放 | 久久高清免费视频 | 黄色片在线播放 | 麻豆出品必属精品 | 国产精品自在在线午夜出白浆 | 久久日韩乱码一二三四区别 | 亚洲色域网 | 亚洲国产中文字幕在线视频综合 | 两个女人互添下身爱爱 | 中国少妇xxxx做受自拍 | 欧美xxxx做受欧美 | 狠狠ri | 小12萝8禁在线喷水观看 | 国产在线国偷精品免费看 | 日本美女视频一区 | 亚洲va欧美va天堂v国产综合 | 日韩精品中文字幕在线 | 无码国产精品一区二区免费式芒果 | 亚洲天堂第一区 | 国产又黄又硬又湿又黄的播出时间 | 成人免费国产 | 欧美片免费网站 | 欧美日韩国产一区二区三区 | 亚洲丰满熟女一区二区v | 国产igao激情视频入口 | 丰满少妇被猛烈进入无码 | 日韩免费视频 | 一个人看的www免费视频在线观看 | 亚洲欧美日韩制服 | 人人人妻人人澡人人爽欧美一区 | 亚洲成人www | 国产成人免费av | 久久久久99精品久久久久 | 免费视频毛片 | www.17.com嫩草影院 | 国产精品亚洲а∨天堂2021 | 日韩欧美啪啪 | 欧美私人网站 | 欧美激情视频一区二区三区不卡 | 中文字幕精品在线视频 | 九九精品九九 | 久久婷婷五月综合97色一本一本 | 在线看成人片 | 欧美一级久久 | 美女黄色一级片 | 成人毛片18女人毛片 | 免费超爽大片黄 | 五月婷婷婷 | 91嫩草国产线观看亚洲一区二区 | 国产精品乱码久久久 | 国产免费女女脚奴视频网 | 特级做a爰片毛片免费看 | 成人福利在线播放 | 色女孩综合 | 欧美日本在线观看 | 免费看美女被靠到爽的视频 | 99久久精品无免国产免费 | 极品人妻少妇一区二区三区 | 夜夜春亚洲嫩草一区二区 | 久久调教视频 | 女人和野鲁性猛交大毛片 | 亚洲精品久久久久久久久久久 | 国产精品久久久久毛片 | 亚洲欧洲无码av不卡在线 | 国产一级黄色大片 | 亚洲色欲久久久久综合网 | 国产黄页| 夜夜爽av | 国产最新av | 亚洲精品视频免费 | 纯爱无遮挡h肉动漫在线播放 | 天天做天天摸天天爽天天爱 | 裸露双乳挤奶无遮掩裸体网站 | 天天av天天翘天天综合网 | 看中国毛片| 毛片网站在线免费观看 | 色哟哟精品视频在线观看 | 国产精品久久久久久久久久久久久久久久久久 | 91视频最新入口 | 精品国产123| 福利视频在线播放 | 女十八免费毛片视频 | 18精品久久久无码午夜福利 | 欧美图片在线观看 | 成人福利视频在线 | 97在线观看视频免费 | 91亚洲精品国偷拍自产在线观看 | 久久天天躁狠狠躁夜夜不卡 | 亚洲乱码国产乱码精品精大量 | 中文在线а√天堂 | 自拍偷拍18p | 无码人妻精品一区二区蜜桃网站 | 国产毛片久久久久久国产毛片 | 无码gogo大胆啪啪艺术 | 亚洲男人的天堂av | 中文字幕亚洲色妞精品天堂 | 人人超碰97| аⅴ资源中文在线天堂 | 91看片www| 又大又长又粗又爽又黄少妇视频 | 日韩精品偷拍 | 天堂中文在线播放 | 无遮挡呻吟娇喘视频免费播放 | 中文人妻无码一区二区三区 | 日韩欧美精品久久 | 成人免费观看视频网站 | 伊人情人综合网 | 日韩av片在线看 | 色婷婷夜夜躁狠狠躁麻豆免费 | 成在线人免费视频 | 日本丰满熟妇bbxbbxhd | 九九热在线视频免费观看 | 很嫩很紧直喷白浆h | 永久免费的av在线电影网 | 人妻少妇精品无码专区app | 成人未满十八无毛片 | 国产h视频在线观看 | 久久亚洲精品无码va白人极品 | 国产又粗又猛又黄又爽无遮挡 | 国产明星裸体无码xxxx视频 | 一级黄色免费毛片 | 一级黄色短视频 | 久久精品国产av一区二区三区 | 国偷自产一区二区三区在线观看 | 群交射精白浆视频 | 高清新婚夫妇性xxxxx | 九一午夜精品av | 成人福利视频网 | 无码专区人妻系列日韩 | 国产成人av免费观看 | www.欧美视频 | 日本特黄特色a大片免费高清观看视频 | 国产成人久久精品流白浆 | 中文字幕在线视频免费观看 | 亚洲人成77777在线播放网站 | 美女裸体十八禁免费网站 | av影视在线 | 成人午夜视频在线 | 欧美碰碰碰 | 精品国产鲁一鲁一区二区张丽 | av毛片观看 | 黄色片子看看 | 天堂一区二区三区 | 成人欧美一区二区三区黑人孕妇 | 极品老师腿张开粉嫩小泬 | 色欲av伊人久久大香线蕉影院 | 国产精品国产三级国产密月 | 中文www新版资源在线 | www.av小四郎.com| 亚洲免费网站观看视频 | 四虎黄色片 | 波多野结衣亚洲视频 | 国产精品丝袜www爽爽爽 | 国产对白精品刺激二区国语 | 这里只有久久精品 | 国产精品videossex久久发布 | 欧美jizz18性欧美 | 一道本在线视频 | 毛片视频在线免费观看 | 日韩精品色呦呦 | 天天看夜夜操 | 亚洲热妇无码av在线播放 | 99视频+国产日韩欧美 | 日本少妇做爰奶水狂喷小说 | 91蜜桃传媒精品久久久一区二区 | 午夜精品在线播放 | 精品免费视频 | 日韩毛片免费无码无毒视频观看 | 2级黄色片 | a级在线看 | 欧美丰满一区二区免费视频 | aaa亚洲精品一二三区 | 久久久久这里只有精品 | 日韩美女做爰高潮免费 | 国产又粗又猛又爽69xx | 一区二区在线视频 | 色啊色| 日本一本视频 | 国产视频国产区 | 99久久免费看精品国产 | 成年人看的黄色 | 国产欧美视频一区 | v天堂中文在线 | 91视频综合网 | 成 人色 网 站 欧美大片在线观看 | 欧美日韩一区二区三区视频播放 | 亚洲成人免费 | 亚洲欧美综合区自拍另类 | 欧美粗大猛烈老熟妇 | 色综合久久88色综合天天 | 国产亚洲欧美在线专区 | 中文字幕 亚洲视频 | 粉嫩av一区二区三区四区免费 | 国产三级av在线播放 | 国产露脸911| 阿v视频免费在线观看 | 国产真实露脸乱子伦原著 | 91国产丝袜在线播放动漫 | 国产精品免 | 色综合久久网 | 中文字幕亚洲乱码熟女在线萌芽 | 群交射精白浆视频 | 久久影视传媒 | 国产乱子伦视频在线播放 | 日本不卡一区二区三区 | 亚洲已满18点击进入在线看片 | 免费观看bbb毛片大全 | 久久久久久1 | 欧美日韩国产色 | 久久久91精品国产一区二区三区 | 精品福利一区二区 | aa一级片| 少妇二级淫片免费放 | 亚洲精品一区二区三天美 | 久久精品人妻无码一区二区三区 | 亚洲黄网在线观看 | 久久国内视频 | 欧美老人巨大xxxx做受 | 91九色蝌蚪 | 四虎国产精品免费久久 | 伊人久久伊人 | 啪啪一级片 | 在线啪 | 成人午夜免费福利视频 | av72在线观看 | 日本亚洲9999aⅴ | 91日日| 亚洲日韩在线观看免费视频 | 日本一级黄色 | 国产视频久久久久久久 | 婷婷综合在线 | 四虎在线观看视频 | 在线 | 一区二区三区 | 中文在线字幕免费观 | 人妻无码αv中文字幕久久琪琪布 | 黑人好猛厉害爽受不了好大撑 | 久久9999久久免费精品国产 | 欧美jizzhd精品欧美巨大免费 | 456欧美成人免费视频 | 日本精品一区二区三区在线观看 | 99久久人人爽亚洲精品美女 | 人妻少妇偷人精品无码 | 婷婷久久亚洲 | 六月综合网 | 久久狠| 一性一交一摸一黄按摩精油视频 | 日韩av中文字幕在线免费观看 | 中国洗澡偷拍在线播放 | 99久久婷婷国产综精品喷水 | 国产人妖av| 欧美精品免费看 | 999亚洲欲妇 | 91国内精品野花午夜精品 | 天堂精品 | 欧美zoozzooz性欧美 | 佐佐木明希99精品久久 | 日本特黄特色大片免费视频网站 | 香蕉影院在线观看 | 欧美激情免费视频 | 夫の部长が调教中文字幕 | 嫩草网站入口 | 欧美激情在线播放 | 国精品人妻无码一区二区三区性色 | 欧美 丝袜 自拍 制服 另类 | 国产丝袜久久 | 中文无码热在线视频 | 干干天天| 91精品国产手机 | 在线天堂www在线国语对白 | 51成人| 成人福利网 | 欧美变态另类牲交 | 免费看日批 | 性开放xxxhd视频 | 开心激情网站 | 久久激情网站 | 亚洲欧洲精品一区二区 | 欧美人与牲禽动a交精品 | 欧美在线性爱视频 | 欧美精品久久久久久久免费 | 亚洲久久色| 精品人人妻人人澡人人爽人人 | 午夜影院体验区 | 乱子伦一区二区 | 婷婷综合少妇啪啪喷水 | 国产亚洲精品久久久久婷婷瑜伽 | 北条麻妃在线一区二区 | 亚洲va在线va天堂xx xx | 亚洲综合精品香蕉久久网 | 欧美性生交xxxxxdddd | 韩国午夜理伦三级2020苹果 | 老妇高潮潮喷到猛进猛出 | 久久久一 | 色偷偷亚洲男人本色 | 中文字幕一路线二路线三路线 | 黄色激情在线观看 | 黄色1级视频 | 天堂网在线中文 | 亚洲国产成人精品青青草原导航 | 成人污污视频在线观看 | 欧美影院在线观看 | wwwav在线播放 | 拔擦拔擦8x海外华人永久 | 国产高潮久久久 | youjizzcom自拍 | 成人福利视频在线观看 | 免费观看不卡av | 久久亚洲欧美国产精品 | 岛国黄色片 | 韩国r级大尺度激情做爰外出 | 国产精品com| 欧美日韩在线视频一区二区三区 | 久章操| a欧美在线 | 国产成人免费视频 | 国产午夜三级一区二区三桃花影视 | 亚洲精品在 | 一本色道久久综合精品竹菊 | 校园春色综合版 | 午夜爱爱网站 | 亚州综合视频 | 狠狠撸视频 | 亚洲综合性网 | 香蕉综合网 | 亚洲蜜桃精久天干天干天啪啪夜l | 天堂а√在线中文在线新版 | 久久久天天 | 99国产精品国产精品九九 | 国精品人妻无码一区二区三区喝尿 | 亚洲熟妇av一区二区三区宅男 | 99国产精品白浆在线观看免费 | 俄罗斯兽交黑人又大又粗水汪汪 | 好紧好湿好爽免费视频 | 岛国av在线免费观看 | 亚洲一区二区图片 | 精品一级黄色片 | 国产aaa| 国产裸体美女永久免费无遮挡 | 日日骚一区 | 国产艹逼网站 | 下面一进一出好爽视频 | 综合自拍亚洲综合图区高清 | 亚洲成在线观看 | 欧美特黄特色视频 | 香蕉视频啪啪 | 天天做天天爱夜夜爽导航 | 久久蜜桃精品一区二区三区综合网 | 福利视频三区 | 人妻av中文字幕久久 | 一级片在线放映 | 国产午夜伦理片 | 偷偷操网站 | 欲妇荡岳丰满少妇岳91在线 | 非洲人与性动交ccoo | 在线观看国产小视频 | 天天上天天干 | 亚洲一区二区三区偷拍女厕 | 成人性生交大片免费看在线播放 | 无套内谢少妇在线观看视频 | 无码中文字幕色专区 | 午夜三级在线 | 国产精品国产三级国产传播 | 中文字幕乱码一区av久久不卡 | 亚洲欧美日韩成人一区 | 风间由美av在线 | 久久精品国产99久久6动漫 | 国产一区999 | 日本午夜在线视频 | 久草在线免费资源 | 又湿又紧又大又爽a视频国产 | 亚洲天堂资源在线 | 日本黄a三级三级三级 | 国产免费一级视频 | 22222se男人的天堂 | 亚洲一区二区91 | 男人用嘴添女人私密视频 | 亚洲高清在线 | 一二三四在线视频观看社区 | 日韩视频一区在线 | 成人毛片100免费观看 | 四虎tv| 国产一区二区三区四区五区精品 | 国产特级毛片潘金莲 | 2018国产在线| 蜜臀av性久久久久av蜜臀妖精 | 久久国产成人午夜av影院武则天 | 毛片com| 亚洲一级二级 | 亚洲另类自拍 | 野草社区在线观看 | 与黑人高h系列辣文 | 狠狠干男人的天堂 | 国产精品久久久久久妇女 | 亚洲国产av无码综合原创国产 | 国产欧美一区二区精品性 | 亚洲欧美国产精品久久 | 国产成人无码性教育视频 | 亚欧洲精品在线 | 人人揉人人 | 91午夜剧场 | 久久久久久国产精品免费免费 | 中文av免费| 久草www| 亚洲日本va午夜中文字幕一区 | 在线久 | 欧美日本国产 | 星铁乱淫h侵犯h文 | 极品少妇xxxx精品少妇 | 偷看洗澡一二三区美女 | 亚洲精品国产一区二区的区别 | 无人在线观看高清视频 | 国产成人麻豆精品午夜在线 | 青青草成人免费视频 | 国产精品免费看久久久无码 | 天天激情|